This posting is about the difference between geom_col() and geom_bar() which look similar.
geom_col() |
geom_bar() |
need both x-axis and y-axis designated |
only need x-axis or y-axis designated |
need summary about x and y |
only need raw material |
<geom_col()>
<EXAMPLE1>
> library(ggplot2)
> library(dplyr)
> mpg2<-mpg%>%group_by(manufacturer)%>%summarise(mean_hwy=mean(hwy)) # make summarise
> ggplot(data=mpg2,aes(x=manufacturer,y=mean_hwy))+geom_col() # x:manufacturer y:mean_hwy
1. designate two variables (manufacturer, mean_hwy)
2. group_by(manufacturer) -------separating data by a variable (manufacturer)
3. summarise(mean_hwy=mean(hwy))-------calculating mean of another variable (hwy) for each manufacturer
4. mpg2------- summary is successfully made
5. ggplot(data=mpg2, aes(x=manufacturer, y=mean_hwy))+geom_col()---------make geom_col() graph <using ggplot2>
x: manufacturer y: mean_hwy
<EXAMPLE2>
>library(ggplot2)
>library(dplyr)
> midwest2<-midwest%>%group_by(state)%>%summarise(mean_popdensity=mean(popdensity))
> ggplot(data=midwest2, aes(x=state,y=mean_popdensity))+geom_col()
1. designate two variables (state, mean_popdensity)
2. group_by(state) -------separating data by a variable (state)
3. summarise(mean_popdensity=mean(popdensity))-------calculating mean of another variable (popdensity) for each state.
4. midwest2------ summary is successfully made
5. ggplot(data=midwest2, aes(x=state, y=mean_popdensity))+geom_col()---------make geom_col() graph <using ggplot2>
X: state Y: mean_popdensity
<geom_bar()>
<EXAMPLE1>
>library(ggplot2)
>ggplot(data=mpg,aes(x=manufacturer))+geom_bar()
no need to make a summary. (no need 'dplyr' package)
we need only x or y-axis. (only designate x in aes())
no relationship (variable: only x)
x: manufacturer y: frequencies of each 'manufacturer' in 'mpg'
It looks same with qplot(mpg$manufacturer)
>library(ggplot2)
> qplot(mpg$manufacturer)
x: mpg$manufacturer y: frequencies of each 'manufacturer' in 'mpg'
<EXAMPLE2>
>library(ggplot2)
> ggplot(data=midwest,aes(x=state))+geom_bar()
It looks same with plot(midwest$state)
> qplot(midwest$state)
'R' 카테고리의 다른 글
(R) ifelse() (0) | 2020.07.23 |
---|---|
(R) make a summary - group_by(),summarise() (0) | 2020.07.22 |
R reorder() -reorder columns in ascending order, descending order when setting aes() (0) | 2020.07.21 |
Interpret data frame/ summary(), typeof(), str(), class(),View(),names(),ncol(),length(),nrow(),dim() (0) | 2020.07.16 |
(R) data.frame function / Way to make data frame 데이터 프레임 만들기 R (0) | 2020.07.16 |